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I. INTRODUCTION

Scattering of a TE electromagnetic wave by a conducting circular
cylinder with an infinitely long axial slot was computed in [1] and [2]
by three different methods: numerical solution of the aperture field
integral equation, numerical solution of the electric field integral equa-
tion, and numerical solution of the magnetic field integral equation. The
method of numerical solution of the electric field integral equation was also
used in [3]. When the slot is so narrow that the field inside the cylinder is
a small fraction of the incident field, the field inside the cylinder can not
be accurately determined by the method of numerical solution of the elec-
tric field intregral equation because, in this method, the field inside the
cylinder is the sum of the incident field and the field due to the numeri-
cally calculated electric current on the surface of the cylinder. The
incident field is the field that would exist if the cylinder were absent.
Similarly, numerical solution of the magnetic field integral equ;tion will
not accurately determine the field inside the cylinder when this field is
a small fraction of the incident field. Furthermore, the magnetic field
integral equation applies only to a conducting cylindrical shell of finite
thickness. The scattering problem was also formulated as a dual series
problem and solved by techniques borrowed from the Riemann-Hilbert problem
in complex variable theory [4])-[8].

In the present report, we solve the problem of scattering by an
infinitesimally thin conducting circular cylindrical shell with a narrow
but infinitely long slot by means of the aperture field integral equation.
As in [2], we use the method of moments to obtain a numerical solution of
the aperture field integral equation. In contrast to the pulse expansion

functions and point testing functions used in [1], we use expansion
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functions that satisfy the edge conditions and test with non-negative 'fz;:
| powers of ¢ where |¢| is the angular distance from the center of the t‘.\:"
slot aperture. In comparison with (9, pp. 1392-1398] where only one ?&ﬁa
expansion function is used, the aperture field integral equation is .Jﬁéi
point matched, and no numerical calculations are performed, we use up 3;§§
to 4 expansion and testing functions and calculate fields at the center g;;ﬁ
of the cylinder and at the center of the slot aperture. ::;‘
In our formulation, the elements of the moment matrix are evalu- :3%35

ated by replacing each expansion function by a very large but finite ,1%§a
number of terms in its Fourier series with respect to ¢. Bessel func- .-2§;
tions of large order are approximated by means of Debye's asymptotic §;:$ﬂ
expansions [10,p. 366]. To obtain a moment matrix that remains well~ gg&%
conditioned as the frequency approaches a resonant frequency of the hﬂz;ﬁ
associated cavity, we choose expansion functions so that the magnetic ﬁgﬁg
field of only one of them contains the resonant magnetic field. The ﬂhﬁ@?
associated cavity is the cavity enclosed by the complete circular cylin- e
drical surface. The complete circular cylindrical surface is the con- ﬁgﬁﬁ
o

ducting shell with the slot covered by a conducting surface whose radius ésg?
of curvature is the same as that of the shell. The magnetic field of an o)
aperture electric field expansion function is the magnetic field that ?fit
exists inside the cylinder when the tangential electric field vanishes E:‘Q
on the conducting circular cylindrical shell and is equal to the expan- }9&1‘
sion function in the slot. The resonant magnetic field is the magnetic igsg;
field associated with the resonant electric field. The resonant electric é‘.ag
field is the interior electric field whose ¢ component approaches zero on s
\j;\w

the complete cylindrical surface as the resonant frequency is approached. MY
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So constructed, our moment solution remains accurate when the associated
cavity is resonant. A computer program was written to implement our solu-
tion. This computer program will be described and listed in a forthcoming

report.

II. MATHEMATICAL FORMULATION

The formulation for the TE excited cylindrical shell is similar to
that for the TM excited cylindrical shell in {11]. Furthermore, the com-
Puter program that was written to implement it is similar to the one
in [12]. An infinitesimally thin, perfectly conducting circular cylin-
drical shell of radius a having a slit aperture of half angle ¢° is
illuminated by a TE polarized plane wave. In terms of the polar coordi-
nates (p,$,z), the equation of the shell is (p=a, q)oid)i 21r—cbo) and the

incident magnetic field g} is taken to be

ul = y Jkpcos(d-a) 1)

where a time factor eJ

we has been assumed and suppressed. See Fig. 1.
The incident magnetic field is the magnetic field that would exist if
the shell were absent. In (1), u, is the unit vector in the z direction,
a is the angle of the direction from which the incident wave comes, and
k = w/lE 1is the wave number where U and € are, respectively, the per-
meability and permittivity of the medium surrounding the shell. OQur ob-
jective is to find the electric and magnetic fields everywhere in Fig. 1.
We close the aperture with an infinitely thin curved conducting
strip whose equation is (p=a, |¢| §-¢o) and,as shown in Fig. 2, we place

the magnetic current M on the right-hand side of the closed aperture and

=M on the left-hand side of the closed aperture. These magnetic currents
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restore the tangential electric field in the aperture. The situation in Y
Fig. 2 will be equivalent to that in Fig. 1 if the tangential magnetic !
field is continuous across the closed aperture. Thus, since the magnetic : \::
Nk
field of a TE wave is in the z direction, we require that oy
o
p=a Al
oo
H(-M) = B (M) + S , (2) 5
z' — z—~ z )
|¢| f_ ¢’° :l.‘Jl
¢~_ !
KAk
where u, H:(-ﬁ) is the magnetic field due to -M placed on the region b ~
¥
side of the closed aperture in Fig. 2, u, H: (M) is the magnetic field due "‘
e*0%, ¢
JOJ
to M placed on the region a side of the closed aperture in Fig. 2, and ":::":‘
Wy
B, H:c is the magnetic field that would exist if the incident wave impinged
on the conducting shell with its aperture closed, i.e., on the conducting ;.,-
Rt
circular cylinder of radius a. Region a is the region for which p > a. '\'
o

Region b is the region for which p < a.

Equation (2) is recast as

)

b a sc p=a
H(-M) ~-H M =H , (3)
z' — z ~ z

6] < o
We let

M=y (4 + M) (4)

where M® is even in ¢ and M° is odd in ¢. Because the magnetic field
due to _g_zMe is even in ¢ and that due to EZMO is odd in ¢, (3)

decomposes into

p=a
b e a e sce
H(-uM)-H(uM)=H . (5)
z2 -2 zZ —2Z Z |¢l < Q)
)
b o) a o sco p=a
H(-uM) -H((uM)=1=H N (6)
z' —2z z'—z z l‘bl < ¢
— 70
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(o}

where H:ce is the even part of Hic and H:c is the odd part of Hzc.

Seeking an approximate numerical solution to (5), we let

4
e e e -
M -j{ VM, (7)
where
6/¢)%372
, ol < ¢
1 - 018
M = (8)
]
0] s otherwise

The expansion functions (8) are reasonable because the equivalent magnetic
current for a narrow but infinitely long slot in a planar conducting screen
of infinite extent excited by a wave TE to the slot axis has l/,/w2 - x2
and x/‘/w2 - x2 terms [13, eq. (44)] where w is one half of the slot width
and |x| is the distance from the center of the slot. Substitution of (7)
into (5) gives

3 e b e a e\, _ pSce o=a

jZ VSH, (u M) - H(w MO = 1SS, ol < ¢ (9

(o}

| A

In (9), HZ(fgzMi) is the z component of the magnetic field in region a

of Fig. 3 and Hz(gzMe) is the 2z component of the magnetic field in region b

3

of Fig. 3. The magnetic fields in Fig. 3 are obtained by solving the boundary

value problem in which E¢, the ¢ component of electric field, is continuous

at p = a where it is given by
E = =M (10)

In terms of the elementary wave functions described in (14, Sec. 5-1]7,
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@ 55 12 (ko) cos (nd) v
a e hl jn n “w,
H M) =5 L @ ¥
n=0 H (ka)
n ¥ ‘l.‘
At
Og'i
11 :‘.'.::
e ¢ i'~
Rup -1 [ Sdnn D 00 00 Ri
z —Z j n n=0 Jr'l(ka) !
- b |'|::
et
et
where n = /u/c and S?n is an unknown coefficient. It is evident from ;'t:‘.
v
L4, eq. (5-19)] that
QUMWY
oH .“ﬂ‘
E, = in = (12) W
o = 11 3ke) s
it
9."!
where E¢ is the ¢ component of the electric field in Fig. 3 and Hz is the "'i
) )
z component of the magnetic field in Fig. 3. Substituting (11) into (12) * ,
<
N
and using (10), we obtain ‘::.:::
"
1.':3
[ ]
®
M = J s% cos (nd) (13) mocs
3 n el
n=0 S
<
From (13), S;n is the Fourier coefficient of M'ja given by ;: 5
) R
€ fo | ]
e n e N
| O %)
Sjn 5 J Mj (¢) cos (n¢) do 14) _
_¢o Y
o '5;,‘
Here, € is Neumann's number L ®
1 = XXl
P nT0 e
2 , n2>1 . ::l.‘i
M
Substitution of (8) into (14) gives Y
S
N
¢ - RN
e ° (/6 ) 205 (ne) do R
$® =2 ° (16) 2
jn 2m 2 "-_ \
- 1 -
o,/ 1 - /o) o
N
The coefficient S°_ 1is evaluated in Appendix A. 3
in v 'b )
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Using (11) and the Wronskian [14, eqs. (D-12) and (D-17)]

3 (ka) Hﬁz)'(ka) - 1! (ka) Héz)(ka) - #%% (an

we obtain

b S?ncos (nd)

e a e
\ [H (cu M) ~H (uM)] = YT (18)
‘ z —z j z—z j"'p=a mmka n=0 J;(ka) HI\IZ) (ka)
which, when substituted into (9), gives
4 % e
) ; e ¢ Sjn cos(n¢) - [Hsce] L lel<e (19)
Tka j ; )" z "p=a °
=1 n=0 Jn(ka) Hn (ka)
It is evident from [14, eq. (5-116)] that
s 2 n_in (6-0)
[Hz ]p-a * T Tka 2 ' (20)
n=—o Hn (ka)
The even part of (20) 1is given by
n
sce 4 snj cos (na) cos (né)
[Hz ]p-a ® 7 Tka 2)' (21)
n=0 2Hn (ka)
Substitution of (21) into (19) and subsequent multiplication by mka/4
glive
1 4 e o S;n cos (n¢)' o Enjn cos (na) cos (n¢)
'2' z Vj (z )" )= -jn 2" 'l(bli@o
j=1 n=0 J'(ka) H (ka) n=0 2H (ka)
n n n
(22)
Seeking an approximate numerical solution to (6),
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3 o/ )P G
. l¢| i ¢O -',',,
2 U
v1 - (¢/¢°) :::::::
o st
M = (24) N, '.'.
j |“:.:.:
B
0 » otherwise
g
Proceeding as in the development (9) - (22), we obtain e
' el
o
'y
o he
1 4 o T Sj sin (n$) T jrl sin(na) sin(nd) -
7L () o = 1y 10128, (25) i
i=1 n-l J (ka) H (ka) n=1 l-ln (ka) '.\"
&':‘n‘
q"' .t',
where O
¢ .“1‘5’;
0o 2j-1 ()
o 1 (¢/¢.) sin (n$) d¢ ‘
S, == (26) LR
S v .
- 1 - (¢/ ety
¢, (6/¢,) !:‘:si..
OO0
The coefficient Sgn is evaluated in Appendix A. &:‘:‘t
b
When the frequency is very close to a resonant frequency of the :;:;:;:;:
. I."l'.'l
associated cavity, there is an integer p such that |J'(ka)| is extremely ‘:':':':"
P :"iz"l:
oW
small. In this case, it can be seen by the following reasoning that any A‘!::'f:f
numerical method of solution will fail to accurately determine V?. The ‘o{:}a};{
)
four cos (p9) terms on the left-hand side of (22) become so large that ':E":::::
‘tc“f
none of the other terms can be discerned. As a result, the only informa- '0.‘;':‘;
that can be extracted from (22) is that ',::
Z Ve s® =0 (27) gy
i S1p R
This single equation is not sufficient to determine Vi, V;’, Vg, and Vz.
There should be no difficulty in solving (25) numerically when
|J("(ka)[ is very small because J(')(ka) does not appear in (25). However,
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if IJl')(ka)l is very small where p is a positive integer, then numerical ",

solution of (25) will be just as difficult as that of (22). AL

]
III. ALTERNATIVE EXPANSION FUNCTIONS e

In this section, the expansion functions are changed in order to »
)
eliminate the indeterminacy encountered in the last two paragraphs of "'.:c'

Section II. If IJI;(ka)I is extremely small, (7) is replaced by ¥

Y R e (28) s

e
where : :!"
(29) e

where ) |

ci = - s?p/s’iP (30) g

Comparing (28) with (7) and using (29), we obtain ol

e )

i W
{=2 ) :.

(31) R
e

e ‘
Vj Vj s 3=2,3,4

4
V) = Jp(ka) V) o+ P eV

()
In view of (30), substitution of (31) into (22) gives oY,

s® cos(p9) o s¥ cos (nd) 0
; (—1'(%)—'— + J' (ka) 1n 2) 0 )
H® (ka) P n=0 J'(ka) H “ (ka)

L
o

n¥p e
(

1 A
EV

e e _e
o (Sin + Cj Sln) cos (n¢)) o

j=2 3 a=o 3! (ka) HIEZ)'(ka) ey

5 % s Fl 5y L 0 1 y .‘-v -
R AN S URATIA A AN S A SO Ln"fn'i.v‘,l.ﬂ\"m",\ BRSNS S AR
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o snjncos (na) cos (n¢)

, lo] < ¢ (32)
= - ]3n 2 (2), - o0
n=0 2Hn (ka)

Numerical solution of (32) should not be difficult when ‘J;(ka)\ is very
small because, in contrast to (22), (32) does not contain any huge cos(p$)
terms which obscure all the other terms.

If IJ:)(ka)I is very small, (25) is retained. However, if ]J;(ka)l

is very small where p is a positive integer, then (23) is replaced by

4
o 0 ~0
M= ) O # (33)
j=1 j 3
where
A0, o
M= Jp(ka) Y
(34)
A0 o o .0
Mj Mj + Cj Ml, j=2,3,4
where
o o ,.0
cj = - sjp/slp (35)
Comparing (33) with (23) and using (34), we obtain
Vo = J'(ka) 9 + Ii cov°
1 - pt@ Ny Ly 14
(36)
o A
vj = Vj » j=2'394
In view of (35), (36) causes (25) to be replaced by
s? sin(p¢) © 8% sin (n¢)
1 1 ' 1n
5 V; ( )" + Jp(ka) ) )" )
H (ka) n=l J'(ka) H (ka)
P n*p n n
o 0.0
+l 1}0_‘ ~o ( z (Sjn + stln)' sin (n¢) )
2 4m2 3 hm1 gr(ka) 59D (ka)
n*p n n
- "2° jns:Ln (na) sin (no) , |¢I < ¢ (37)

n=1 Hr(12) ' (ka)




R Y R OO I IR TN v MW ¥ YN WLUWL WL TP U TONMA R I O™ W XWXy

?

-

13 [
N
3

Equation (37) is valid for p > 1. If p = 0, we revert to (25). Numerical oM
solution of (37) should not be difficult when |J;;(ka)l is very small because, ~
in contrast to (25), (37) does not contain any huge sin (p$) terms which :“
\J
obscure all the other terms. ‘::f
Equations (5) and (6) can be viewed as operator equations. For "
Al

()
example, (5) is .
e e
LM =g (38) o

where L is an operator and g is a known function. Now, (18) is LM? where i::
‘l

M; is given by (13). Since (8) was not used in its derivation, (18) can %::
Y,
be generalized to mean that, given an even 2m periodic but otherwise arbi- "-;
trary function f(¢), Lf is the right-hand side of (18) where {Sin} are the e::t
» 'l‘
Fourier coefficients of f. Taking f = cos (pd), we obtain :::
|:‘:

(N )

2
L(cos(p9)) = <98 (p¢%2)' (39) »
mnka Jl;(ka) Hp (ka) ,::
] '.
When |Jl;(ka)l is very small, the expansion functions {M;', j=1,2,3,4} are $
. '
not good because each one of them contains cos (p¢) so that all of the

by

functions {L(Mj), j=1,2,3,4}, being roughly proportional to cos (pd), are {»‘:
bt 1

Y

: nearly indistinguishable from each other. The expansion functions ,‘
o . '
{Mj, j=1,2,3,4} are better because M.i, which contains cos (p$), is normal- L
)

Y

ized so that Lﬂ.i3 remains finite, and none of the functions {ﬁ;, j=2,3,4} ::3:
'

)
contains cos (pd). Therefore, none of the functions {Lﬂ?. j=2,3,4} con- .
tains cos (p¢). Since none of them are dominated by cos (p¢), the 2
)

"X
functions {Lﬂj. j=2,3,4} are easily distinguishable from each other and ':::
R
ne .‘k
from LMI' :'.,
XY

. S

-"; RN \’;. 55} A ]i, 4‘)’. Ve |’g 1% J‘;..'q_l';.l".i .0‘. l'. t’l'._ .- \( .“ [
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IV. TESTING FUNCTIONS

In this section, 4 linear equations are extracted from the functional
equation (32) by multiplying (32) by each of 4 even functions called testing
functions and integrating from -¢o to ¢o with respect to ¢. Similarly, four
linear equations are extracted from (37) by multiplying (37) by each of four

odd testing functions and integrating over the slot.
Called {Wi, i=1,2,3,4}, the even testing functions are defined by

e _ 21i-2 -
W, = (¢/¢o) , 1=1,2,3,4 (40)

Multiplying (32) by WS and integrating over the slot, we obtain four equa-
i

tions, one for each valve of i. In matrix notation, these equations are
e = 1¢ (41)

where §e is the column vector whose jth element is V; and Y is the

4 x4 matrix whose elements are given by

¢ s © F¢ s
Y - _tZ)—L-l + J'(ka) = (éx)l. > 1=1,2,3,4 (42)
H (ka) P n=0 J'(ka) H (ka)
P ngp n n
o o€ e e _e i=1,2,3,4
v = Fin(sjn + Cj Sln) (43)
1j (K (2)' ’
:-0 Jn( a) Hn (ka) j = 2,3,4
where
b
"3 f (616 )% "2 cos (nd)do (44)
..¢,°

The coefficient Fin is evaluated in [11, Appendix B]. In (41), ?e is the
column vector whose elements are given by

n_e
© € { F, cos (na)
Ii - - 24n z n in

» 1=1,2,3,4 (45)

n=0 Zﬂéz)'(ka)
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The odd testing functions are defined by f'"n:.
i
)
W= 0/, 1= 1,2,3,4 (46) X
o l:. l;:s
We multiply (37) by Wi and integrate over the slot. Doing this for i=1,2,3, ‘o:::s‘.
! I"ti"
and 4, we obtain the matrix equation . i
‘A
- ALY
vov° = T° 7 oy
'-" J‘.’,
60 ~0 o]} ':ﬁ‘,:-r’:
where is the column vector whose jth element is Vj, and Y {s the 4x4 \_i._-; o
matrix whose elements are given by ,
) Q;.;i
Mgy
O XA
o JFip S 2 P s
Y sy + Jika) ] oy , 1=1,2,3,4 (48) i
H'“) (ka) P n=l J'(ka) H 7" (ka) SRS
P ngp )
RO
= ¥
w F° (so + Co So ) i 1,2,3,4 .::',::..:
o in""jn i "ln OULRR
LTI ) . (49) ot
n=1 Jr'x(ka) Hn '(ka) § = 2,34 e\
nto > »
where A ':,:_: :
o _1 [° 21-1 N
- — - :‘. ‘.
- Al
R &
The coefficient Fci) is evaluated in [11, Appendix B]. 1In (47) —I)o is the ;#\-:*
n . f‘
.,
column vector whose elements are given by S& A
n o &
o © Fin sin (no) S
I, =-2jn | ; » 1=1,2,3,4 (51) W%
i 2) A5
n=1 H (ka) .
n 3N
i.

Actually, (47)-(49) are valid only for p > 0. For p = 0, we multiply

(25) by Wi and integrate over the slot. Doing this for 1 =1,2,3, and 4, ::ﬂ:,,

we obtain (47) with the elements of 60 given by Y

% = v° , (52)

o+
o,
’
with the elements of Y° given by ¢

ST y . - y L% N LA A ARV AR T et e P
REANE L I v’M‘*.o ey .o“.n'l,u'tﬁ by ;".\l.l".\.ll.t oot * » \5 AL A AN, o ale i
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0 O At
o F, S Al
Yy, - A . (53) o

n=1 J'(ka) B “’ (ka)

and with the elements of I° given by (51). :.“:

After (41) 1is solved for §e’ M® will be given by (7) with y
{Vj’. j=1,2,3,4} given by (31). After (47) 1is solved for 50, M° will be
given by (23) with {v‘;, j = 1,2,3,4} given by (36) for p # O and,

':‘s.
according to (52), by M

=%, j=1,2,3,4 (54) i

(o]
\'
h| h| '..:;Q‘:

for p = 0. Finally, M is given by (4) where M® and M° have been described

in the previous two sentences:

4 '
e 0, 0 b8 .
M=u j-2-1 (V?Mj + v (55) '5:

The magnetic field in Fig. 2 is EzHa where
a sc
Hz(ﬁ) + Hz . 0o >a aih
H = (56) Wttty
HP (M) o<a .
z — ’ :’
sc a b . ’
where Hz » Hz(g), and Hz(-g) are the z components of the magnetic fields ety

due to the incident wave, M, and -M, respectively. From (1) and [14, YUY

eqs. (5-114) and (5-115)], we obtain 2 N
L) 'Q
{]

sc o n Jr'1<ka) 2) i
H = ] €, [Jn(ko) - == H "7 (kp)] cos (n(d-a)) (57) iy

z n=0 Hr(12)' (ka) n '.»

From (55), we have i

PRy CA Ay Ly R > NN
L DA AT BEM N W TR W M G
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a 3 e .a e 0.4 0 :;:3:'
u :
Hz(M) = z (Vv Hz( Mj) + Vsz(u Mj))

j=1 ] -"\Q%,
(58) £

‘i L}
b e.b e o.b o -
H, (-M) jZl(vjuz(-gzmj) + ViH, () e

a e b e .
where Hz(g_zMj) and Hz(-gzMj) are given by (11). Similarly,

I
a (o]
H(uM,) = z 7
A HI(12) (ka) o
(59) W
‘l"(ﬂt";!

(o] (X
2 Sypd, (ke sin (ng) iy

J l"l (ka) SN

ED (o) stn (o) A

b - oy o 3
Hz( EzMj) n n=1

so that (58) expands to

o e (2) - o (2) e
Eie s Sifa 090 cos GOk, o SRV 00) etn 8) i
i=1 ] n=0 H;EZ) (ka) j=1 J =1 H(Z) (ka)

n » \
(60) Y

e >
4 R o Sjan(kp) cos (n¢d) o .‘f
LS, S + 8 00 o %
n¥p TR

a
K =1

b
Hoa) = d |

o Soan(kp) sin (n¢) ."n':‘.

4

o 3 o 8 )

+ jgl vy (ngl ey ) + B J (ko) sin (p4)] (61) o
n¥p 0y

1)
where :ﬁ ..fc'j
[]

4
e 1 e e

ELNVEY vV, S 62 >
P I (ka) j§1 j e €2) R

4 0t 0y
) 1 o .0 Vo
p " IT0) 321 Y3 Sip 2 X

If p =0, the B: term is to be omitted from (61). oy

% S5

-
"

T

b e T N
Pl
I"{“l “s

B AR S AR AN RN
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Do B: and B; remain finite as J;(ka) approaches zero? In view

of (30), substitution of (31) into (62) gives

e e ne
Bp slp vy (64)
Substituting (36) into (63) and using (35), we obtain -
NS
0 _ 0 0 NA
TS o 3 e
e o ::.'-::.-
As given by (64) and (65), Bp and Bp remain finite as Jl;(ka) approach : .
-v-q
zero. R
R
Qh#
When 0 = 0, (61) reduces to ¢ 0
0'::".‘
.I. ll
] oo o©
5 n V1 S0
Hz(fy) = s p=0 (66)
1 ve s® 0
nJ} (ka) jzl 3% P ’

Equation (66) was obtained by using (64) and [14, eqs. (D-9) and (D-10)]

1, n=20

Jn(O) = (67)
0, n>1

0
)
o

X

In the preceding three paragraphs, we found Esz’ the magnetic

o
M) t

field in Fig. 2. Called E, the electric field in Fig. 2 is given by (14,

ﬁ.’
22

-
2y

2R
P

eq. (5-19)
= - 40 (yy
E K ( , XU ) (68)

Since M was determined such that the situation in Fig. 2 is equivalent to

> E
RS

that in Fig. 1, the fields in Fig. 2 are the same as those in Fig. 1. Thus,

WH

we have obtained our objective, which was to find the fields averywhere

[
’

in Fig. 1.

" - . a - iy > v e
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V. BISTATIC SCATTERING WIDTH
The bistatic scattering width is called 0 and is defined by
[15, eq. (3-49)]
s
o = un (2mp|-2|%) (69)
proo H
z
where H: is the z component of the incident magnetic field given by (1)
and H: is the z component of the scattered magnetic field given by
s _ _ 4l
Hz = Hz Hz (70)
where Hz is the total magnetic field given by (56). Substitution of
(56) into (70) gives
s a sc i
H,=HM +H -H , 0>a (71)
It is evident from (1) and [14, eq. (5-113)] that
i [+
H = ] € 3" (kp) cos (n(¢-a)) (72)
z n n
n=0
Subtracting (72) from (57), we obtain
= € 37 (ka) HP (ko) cos (n(4-a))
sc i n n n
Hz - HZ = - (2)| (73)
n=0 H (ka)
n
Substitution of (60) and (73) into (71) gives
(2)
oo 4 H "7 (kp) cos (n¢)
W= ] [% 8 v?s;n) - € 173! (ka) cos (na)] 3y
n=0 j=1 Hn (ka)
® 1 4 0.0 a H(Z) (ko) sin (n¢)
+ ) [« ) vjsjn) - 2§73} (ka) sin (no)] DL (74)
n=1 j=1 H (ka)

n

Kty
Sws

.lfl"
STy
4;'!‘} J‘"“"
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Substituting (74) into (69), recognizing that ]Hi[ = 1, using the
large argument formula (14, eq. (D-13)]
2, . [21 a0 -jko
H "7 (ko) = Tko j e s (75)

and dividing both sides of (69) by ma, we obtain

co +1 4
o __4 jn e.e | _ 1%y cos (no)
e~ Tia lngo 5 (jzl ViSin) = Ea(-1)I  (ka) cos (aa)] 1O

o n+l 4
+ [ e (1 visS) - 26D glt@) sin ()] SESEO2 76

n=1l i=1 HI(IZ)‘ (ka)

If there were no slit, then {V°®

;" vg’=o, j=1,2,3,4} and (76) would

reduce to a quantity called 0°%/ma:

g-s—c ) -_4— [- (-l)nEnJ;(ka) cos (n(d)—(l)) 2 (77)
T Tk oo Hr(lZ) (ka)

The quantity csc/wa is the normalized bistatic scattering width of the
closed cylinder, i.e., the short-circuit normalized bistatic scattering
width. This width is that associated with the well-known scattering

pattern [14, eq. (5-117)] of the closed cylinder.

VI. NARROW SLOT AT RESONANCE

If the slot aperture is narrow and if the associated cavity is
resonant, that is, if there is a non-negative integer p such that
J;(ka) = 0, then we can show that the glit cylinder scatters nearly the
same as the corresponding closed cylinder and we can find approximate

expressions for the field components inside the cylinder. Thus, we will
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have values against which we can check field components and bistatic

scattering widths computed from formulas in Sections IV and V.

S| LS NN NCS
‘daﬁfQF »

P yd
e,

7
]

v
Ty

In order to do what is proposed in the first sentence of this

L
L 4
Frs

section, we consider

|

w
0
LS

-

L]
U
I

J=J"+J - (78)

o’

oy oy
L ).'-’ ¢
L
]

P

c
where g? is the electric current that would be induced on the cor-

& ¥,
»
¥

v

»

"'

responding closed cylinder:

i

R TRl v B (79)

ATt
PHE

Moreover, gé is the electric current at p=a given by

o4
D

AN

Aty b by

:[A = 2¢(A: cos (p¢) + A: sin (p¢)) (80)

LA ".' 'y
A
A
L

“py s

¥

where A: and A: are constants. In (79) and (80), 5¢ is the unit vector

in the ¢ direction. The z component of magnetic field, Hi, and the ¢

Ay Yy,
o
5

5

component of electric field, Eg, produced by gé radiating in the homoge-

ar s
’,r

neous medium with constitutive parameters y and € are given by O
I (kp) o s,
L

—L—Jp(ka) (Ap cos (pd) + A sin (p9)) » P <a o

H, - (81) o

7alke) . T
J (ka) (AP CoSs (P‘i’) + Ap sin (P¢)) > p

Wy
E‘;/TP' (82)
0 » P2 a

[
[+V]

r"g ",:"r‘-
['d

£
P

>

The p component of electric field produced by gé is not considered here.

X
v

L hRe

Since Egln vanishes at p = a, the ¢ directed electric field

produced by J of (78) cancels the ¢ directed incident electric field

"- . ..;\ .? - ‘\' . : - .’- » -' .—' s - . v _4, . ’.\‘;' “’--{\ ‘;I\;n\ o. ».“-_;'.\.
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at p = a, Thus, if it did not spill over into the aperture, J would be
the true electric current induced on the slotted cylindrical surface.

e o dJ
Now, 1if Ap and Ap are adjusted so that both J¢ and jif-vanish at ¢ = 0,
then J will be small in the aperture and therefore will be a good approxi-

mation to the true electric current. Here, J¢ is the ¢ component of J.

Actually, if p = 0, then A; drops out of J and only J, can be made to

¢
vanish at ¢ = 0. Substituting (79) and (80) into (78), using (20), and

dJ
forcing J¢ and jif-to vanish at ¢ = 0, we obtain

n
€ j cos (na)
A€o b n
P Tka

(83)

(2)'
n=0 2Hn (ka)

A° = - 44 S njn sin (na)
L A AN

, p#0 (84)

In the preceding paragraph, we found that the electric current
on the slit cylinder is approximately J of (78)-(80) with A: and Ag
given by (83) and (84) if the slit is narrow and if the associated cavity
is resomant. Thus, the field that exists in the presence of the slit
cylinder is approximately the field which would exist in the presence of
the associated closed cylinder plus the field produced by gé. Since there
is no field inside the associated closed cylinder, the field inside the
slit cylinder is approximately the field due to gé. Substituting (83)
and (84) into (81) and (82) and using [14, eq. (D-17)] and the fact that
J;(ka) = 0, we express the components (81l) and (82) of this interior

field due to J" as

e Pl P WL o W B N o I R 2R R s N o S R LR O O AL AL NN
M D A A e e G S S e o N M I SWASCYA



© € jn cos (no)
H = - 27! (ka)J_(kp) [( ] OR
P P a=0 20 (ka) n=l " (2)"

n

(ka)
(85)

o g 3"cos (na)

' ' n

Ey/n 2 (k) (0N (] 277
n

©
) cos(pp) +2 (] BLeiBma)) gy
(ka) P om1 89 ()
(86)

where the 1/p terms are to be discarded if p=0. Here, Yp(ka) is the
Bessel function of the second kind of order p. The field components
(85) and (86) are approximately those inside the slit cylinder when the
slit is narrow and the associated cavity is resonant. Since, according
to (81) and (82), the field due to gé vanishes outside the cylinder, we
deduce that the field outside this slit cylinder is approximately the
field that would exist outside the corresponding closed cylinder.

In the preceding paragraph, we have shown that, if the slit is
narrow and if the corresponding closed cylinder is resonant, then the
field components inside the slit cylinder are approximately (85) and
(86) and the field outside the cylinder is approximately the field which
would exist if there were no slit. Since neither (85) nor (86) depend on
the width of the slit, it is evident that the amount of TE field that enters
a resonant circular cylindrical cavity through an infinitely long but

narrow slit does not depend on the width of the slit.

VII. NUMERICAL RESULTS AND DISCUSSION

By means of a computer program that will be described in a
forthcoming report, lE¢/n|of (68) was calculated in the aperture, and
|E¢/n|of (68) and le| of (56) were calculated at the center of the

aperture and at the center of the cylinder. The normalized scattering

1,v .o
) cos(p¢)‘*;'( Z EJ_EEESEQI) sin(p¢)])

=Y
2
A2

.
=

53

SE 4o




widths o/ma of (76) and 0°%/ma of (77) were also calculated at (¢,a) =

Bher i)
(0°, 0°), (180°, 0°), and (180°, 180°). Results of these calculations Geleh

)

ol

obtained by truncating the summations with respect to n at n = 10,000 ':a.:m
whe!

are presented here. B
Py

RNy

The aperture field amplitude IE¢/n| shown in Fig. 4 agrees well ;::." '

"

with [1, Fig. 27] and [16, Fig. 11]. The data of Fig. 4 were obtained oy
. .

by replacing (7) by “-‘.:-,;"2
h

e, ™ o e R

M=V vEM® , MN <4 (87) Gl

J J - ':.\"!l

j=1 :t'::cl.

,l_-“!-l'.‘

e §e re '

If NN < 4, the matrix Y and the column vectors and 1 in (41) were ';:.:;:‘:..

.‘.“'.‘!‘

truncated accordingly. In Fig. 4, the aperture field amplitude obtained ‘::E:::::
l"'. .l

(W U

by using NN = 1 is nearly the same as that obtained by using NN = 4. ::':;:j:
L)

However, the field amplitude obtained by using NN = 1 is very different ~ ','.'

)

OGN

from that obtained by using NN = 4 in the wider slit aperture of Fig. 5. "%:’::

Nevertheless, the field amplitude obtained by using NN = 3 in Fig. 5 is 2 :.'0.".:'.

R 8

nearly the same as that obtained by using NN = 4. The curve for which .‘-\* "5.

-

NN = 4 in Fig. 5 agrees with [2, Fig. 4]. - h.,:

g

Figure 6 shows a ka scan of |E¢)/n[ at the center (p=a, ¢=0) 4« )

of the slit aperture in the cylinder of Fig. 1 for ¢>o = 5° and a = 0°. A X

~ ;

The data of Fig. 6 and of all subsequent figures were obtained by using ‘\}_" A )
-",‘.l_"

NN = 4, In Fig. 7, the data of Fig. 6 are plotted on a logarithmic _:TN

scale. The peak of |E¢/n| at ka = 0.374 is probably due to the H-pol :-\. g

3

low frequency resonance noted in [8, p. 519}. The three minima of f-“*f"'
by

oY W

lE¢/n! occur very close to resonant values of ka. Resonant values of ka }":-&'-

are values of ka for which there is a non-negative integer p such that )

J;(ka) = 0. After dipping to a minimum very close to a resonant value -

. l';‘o'"ﬂ ‘.\.q‘l'-.l'-.l'».o'.‘l'.‘l' .
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The solid curve

L 20N B 2
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4
= 5°, o = 180°, and ka = 3.456.

Since a = 180°, the slit aperture is in the shadow region.
is the solution for which NN = 4.

which NN = 1,

¥

o

-

The symbol @ represents the solution for

¢, degrees

E
Fig. 4. Field amplitude |7$| in the aperture for ¢
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The solid
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12
= 18°, @ = 0°, and ka = 10.

The symbols @ and [J represent

o
the solutions for which NN = 1 and NN = 3, respectively.

10

¢, degrees

n
Since a = 0°, the slit aperture is in the illumination region.

curve is the solution for which NN = 4,
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Fig. 6. Field amplitude |-7)Q| at the center of the aperture for ¢o = 5° and o = 0°.
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|E$/n| of (86) and IH?I of (85) are also tabulated.

for resonant values of ka.

5° and o

Table 1. Field amplitudes ]E¢/n{ and IHZI at the center

= 0°.

of the aperture

For comparison,

ka [Egml gl ml w)
1.841184 0.039 0.0 1.867 1.866
3.054237 0.065 0.0 1.921 1.914
3.831706 0.040 0.0 1.944 1.945
4.20119 0.098 0.0 1.954 1.938
5.31755 0.132 0.0 1.983 1.954
5.33144 0.042 0.0 1.955 1.953
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= 5° and a = Q°
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plotted on a logarithmic scale.

Field amplitude [H_ | at the center of the aperture for ¢
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at the center o~

= 5°and a = 0°.

For comparison, |E$/n[o of (86) and |H2[ of (85) are also Lh'.Y b

tabulated.

evaluation at ¢ = 0°.

ka

The subscript "o

o

|E¢/nlo

on |E¢/n| and |E$/n| denotes

A
IE¢/n|o

1.841184

3.054237

3.831706

4.20119

5.31755

5.33144

1.606

2 x 1072

4 x 1070
1 x 1074
0.018

2.824

1.604
0.0

0.0 4.829
0.0 3 %10 0.0
0.0 3 x 1074 0.0 e ,

2.822
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The solid curve in Fig. 14 is a ka scan of the normalized back-
scattering width o/7a of the cylinder of Fig. 6. This o/ma is given by
(76) with ¢ =a= 0°. The dashed curve in Fig. 14 is the normalized
back-scattering width of the corresponding closed cylinder, given by (77)
with ¢ =a= 0°. Comparing the solid curve in Fig. 14 with that in the
left~hand plot of [8, Fig. 19b], we note that the first peak of the solid
curve in Fig. 14 is slightly higher than that of the solid curve in [8].
Furthermore, the spike in the neighborhood of ka = 5.32 is more pro-
nounced on the solid curve of Fig. 14 than on the solid curve in [8].

In Fig. 15, the normalized forward scattering width o0/ma of the
cylinder of Fig. 6 is plotted solid and the normalized forward scattering
width of the corresponding closed cylinder is plotted dashed. These
scattering widths were calculated by setting ¢ = 180° and a = 0° in (76)
and (77). Comparing the solid curve in Fig. 15 with that in the right-
hand plot of [8, Fig. 19b], we observe that the spike in the neighborhood
of ka = 5.32 protrudes down farther in Fig. 15 than in [8].

The solid curve in Fig. 16 is a ka scan of the normalized back-
scattering width o/ma of the cylinder of Fig. 14 with o = 180° instead
of o = 0°. This o/ma is given by (76) with ¢ =a = 180°. The dashed curve
in Fig. 16 is the normalized back-scattering width of the corresponding
closed cylinder, given by (77) with ¢ =a= 180°. In Fig. 16, the aperture
is in the shadow region whereas in Figs. 14 and 15, the aperture was
directly illuminated. By reciprocity [15, p. 45], the forward scattering
width of the cylinder of Fig. 16 is exactly the same as the forward scatter-
ing width of the cylinder of Fig. 14. Comparing the solid curve in Fig. 16
with that in [8, Fig. 2la], we observe that the first peak of the solid

curve in Fig. 16 is slightly higher than that of the solid curve in [8].
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In Section VI, it was shown that, at resonant values of ka, o
Al
scattering from a cylinder with a narrow slit aperture is approximately ’.("
U
oty
the same as scattering from the corresponding closed cylinder. This '.,":
% '."‘
P U
means that the solid and dashed curves in each of Figs. 14, 15, and 16 . ':-
should cross each other at values of ka very close to the resonant values "";'.""
of ka. Labelling the solid curve 0/ma and the dashed curve Osc/'fra, we %;
-._Hi’h:
computed 0/ma and 0°®/Ta of Figs. 14, 15, and 16 at the first six :f"
resonant values of ka, given in the first column of Table 1. Reassuringly, “‘.%
\
S
the difference between each of these values of o/ma and the corresponding ':::::"
l.n‘i‘
value of OSC/TTa was always less than 1%Z. 1In Fig. 14, o/ma is correct at ..:::::::
8
ka = 5.31755 and at ka = 5.33144 because it agrees with 0° /Ta there. o
0‘\"‘;{
Correctness of 0/ma at these values of ka in Fig. 14 is meaningful because :'\"'o.‘
W)
o/ma is changing so rapidly there. Reading our numerical values of o/ma ,“':n"_
in the neighborhood of ka = 5.32, we see that o/ma is 0.973 at ka = 5.31755, ;-;,,
hihes
gk G ¥
rises to 1.49 at ka = 5.32667, dips to 0.048 at ka = 5.326885, and then -‘;\:-r
S
REGLAY
rises to 0.979 at ka = 5.33144! NI
The precise locations of the peaks of the solid curves in Figs. 14, k.‘(-f‘ y
w
o
15, and 16 are pinpointed in Table 3. The entries in any column of Table 3 ::
l‘ )
o
are the values of ka at the peaks of the solid curve in the figure whose .‘\':
number appears at the head of the column. Some spaces in Table 3 were left ,::.:
empty in order to obtain alignment of the abscissas of similar maxima. '_,,,:.
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Table 3. Values of ka at the peaks of the solid curves in Figs. 14,

15, and 16.
Fig. 14 Fig. 15 Fig. 16
0.375 0.3725 0.3755
0.800 0.91
1.958 1.952 1.96
2.30 2.22
3.149 3.11 3.153
3.40
3.8535 3.83 3.866
4.292 4.20 4.305
5.27 4.56
 5.32667 5.32698 5.32677
5.444 5.47
5.72
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APPENDIX A

EVALUATION OF S° AND s°
jn jn

Changing the variable of integration from ¢ to

x = ¢/¢,
in (16) and (26), we obtain
1 ,
e _ En¢o XZJ cos (bx)
S, = dx
jn 2n 3
-1 1 -x
1 .
o) cpo xzj-lsin {bx)
S = — dx
in i 5
-1 1 -x
where
b= n¢o

In regard to (A-2) and (A-3), it is known that [17, formulas 3.752(2.)

and 3.753(2.)]

1

J Vl - x2 cos (bx) dx = WJt(b)
-1

1

f cos (bx) 4, J_(b)
-1 1 - x2

Assuming that n # 0, comparison of (A-6) with (A-2) gives

e
Sln ¢0Jo(b)
Integrating the right-hand side of (A-3) by parts, we obtain

1

o b
Sgn - fg— f Vl - x2 cos (bx) dx

-1

which, in view of (A-5), reduces to

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)

(A-8)
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2 3, (b (A-9) by

S1n = %71 N

»
.,
»

i

Seeking a recurrence relation for S?n when n # 0, we use the identity

L gl

«2372 2 2 - a-x®y) (A-10) 14

s Yy
‘ to recast (A-2) as _

1 b

5 ¢ “‘\
i e _ e __o 2j-4 / _ U2 _ )
:,, Sjn Sj-l,n - I X 1 x~ cos (bx) dx (A-11) I~
R -1 oy
¢ -

‘ which, upon integration by parts, becomes i

. Y0
K 5 A o
N e _ e "o d . 25-4 2 _ Wy
f: Sjn Sj-l,n + on J sin (bx) Tx (x 1 x) dx (A-12) :::
" -1 :’:

Performing the indicated differentiation in (A-12), we obtain L
- %
I Sy
L5
0 0\l
e L _Q1) o L2G-2) o . ; 0
g Sin = S3-1,n S Sl T Sag e 7203, (A-13) \
o 28
" where the S;—Z a term is to be omitted when j=2.

. 4 -
',;' Seeking a recurrence relation for Sgn’ we use an identity similar to :\:':‘
% XY
;:I (A-10) to recast (A-3) as ;‘. )
4 1 :‘% '

¢ ]

. o _ © _ .o 2j-3 _ L2 _ -
? Sjn Sj-l,n o [ x 1 - x” sin (bx) dx (A-14) %
! -1 ”
2 An integration by parts changes (A-14) to .|n':

§
A ) 1 :
B 0o _ O _ o d . 2j-3 .2 _ "
' Sjn Sj—l,n — f cos (bx) I (x 1 x) dx (A~15) ;:
! -1 ':”f
:’4 :’\.
’ Performing the indicated differentiation in (A-15), we obtain the g
3 )
" recurrence relation N\ ;‘?.
e t
R ® «g° + 2(4-1) s - (23-3) 5@ (22 3 (A-16) :::f
: jn ~ 7§-1,n b jn b “j-l,n * 377 Y
Using (A-13) and (A-16) to recur up from (A-7) and (A-9), we obtain ;:"
5;
) \
a9
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< - bJo(b)
In n
e bJo(b) - Jl(b)
S =
2n n
2
o (b —3)(bJO - 2Jl)
S3n = 7
nb
. (b*-3b460) bI_(B) - 30% - 11 b% + 40) I, (b)
S =
4n nb4
© - le(b)
In n
(2-2) J,(b) + bJ_(b)
So - 1 o
2n nb
4 2 2
o (b =7b"424) Jl(b) + 2b(b" - 6) Jo(b)
S =
3n nb3
6 4 2 4 2
o (b -15b " + 192b7-720) Jl(b)+3b(b - 17b74120) Jo(b)
S =
4n 5

nb
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(A-17)

(A-18)

(A-19)

(A-20)

(A-21)

(A-22)

(A-23)

(A-24)

Expressions (A-19), (A-20), (A-22), (A-23), and (A-24) become inde-

ninate as b approaches zero. When b < 2, we approximate cos (bx) in

2) by [18, formula 415.02].

2 2% " 720 T %0320 ~ 3628800

ancounter integrals I2j defined by
1 Zjd
I, = r X | 3=0,1,2,...
2j >
-1 1-x

is evident from [17, formula 3.248(3.)] that
[ = m(2j-1)11 120,1,2, ..

2 @ipr 2
re —
1 , j=0
(25-1)11 =
13¢5 ... 2j-1, § > 1

.....

(A-25)

(A-26)

(A-27)

(A-28)
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d .

an 1 , i =0

@i = (A-29)
20406...25 , §>1

From (A-27), we obtain
I =1
(o]
12 = 7/2
I4 = 31/8
I6 = 5m/16
I, = 35m/128 (A-30)
I,, = 631/256
I,, = 231m/1024
I,, = 429m/2048
Le™ 6435m/32768
I, g = 12155m/65536

In view of (A-30), substitution of (A-25) into (A-2) gives

s . o’ (1 - S M S SN ‘s ] (A-31)

in 2 4 64 _ 2304 " 147456 ~ 14745600

R AR S N S SRS VS (4-32)

2n A 8 192 ~ 9216 81920 ~ 88473600

¢ o nf% o_ose? st 7’ L im® 1430 ] (A-33)

3n 16 12 © 1152 ~ 7680 © 737280 ~ 928972800

e U GO U 4 SN VY S VE | Sl (ae3)

4n 32 16 640 ~ 76800 © 8601600 825753600

When b < 2, we approximate sin (bx) in (A-3) by (18, formula 415.01]

33 55 77 9 9 11 11
X b x b x b 'x b Tx

sin (bx) = bx - == * J55" ~ 5040 * 362880 ~ 39916800 (A-35)

n s 9 - - % Y
SRS bt a1 TS e g Kty St S e b e e L e b s IR D A X W0 ,,..,...,_ il .,!..._ A AR XS



We substitute (A-35) into (A-3) and use (A-30) in order to obtain

P I G L
n " 72 8 " 192 ~ 9216 * 737280 ~ 88473600
AP S M NN ¢ LS | S ]
"8 3 * 1152 ~ 7680 ' 6635520 ~ 928972800

o % oot o’ | 1w’ 13! :
3~ 6 %8 * 3200 ~ 76800 T 77414400 ~ 825753600

© - 2%° o3 et 1w’ | owsw® | aw®
4n = 128 20 * 1600 ~ 940800 * 72253440 ~ 1000432246

(A-36)

(A-37)

(A-38)

(A-39)
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